Reduced glutathione alleviates tunicamycin-induced endoplasmic reticulum stress in mouse preimplantation embryos
نویسندگان
چکیده
Endoplasmic reticulum (ER) stress, a dysfunction in protein-folding capacity, is involved in many pathological and physiological responses, including embryonic development. This study aims to determine the developmental competence, apoptosis, and stress-induced gene expression in mouse preimplantation embryos grown in an in vitro culture medium supplemented with different concentrations of the ER stress inducer tunicamycin (TM) and the antioxidant glutathione (GSH). Treatment of zygotes with 0.5 µg/ml TM significantly decreased (P < 0.05) the rate of blastocyst formation, whereas 1 mM GSH supplementation improved the developmental rate of blastocysts. Furthermore, TM treatment significantly increased (P < 0.05) the apoptotic index and reduced the total number of cells, whereas GSH significantly increased the total number of cells and decreased the apoptotic index. The expression levels of ER chaperones, including immunoglobulin-binding protein, activating transcription factor 6, double-stranded activated protein kinase-like ER kinase, activating transcription factor 4, and C/EBP homologous protein were significantly increased (P < 0.05) by TM, but significantly decreased (P < 0.05) by GSH treatment. A similar pattern was observed in the case of the pro-apoptotic gene, B cell lymphoma-associated X protein. The expression level of the anti-apoptotic gene B cell lymphoma 2, was decreased by TM, but significantly increased after co-treatment with GSH. In conclusion, GSH improves the developmental potential of mouse embryos and significantly alleviates ER stress.
منابع مشابه
Inhibition of Endoplasmic Reticulum Stress Improves Mouse Embryo Development
X-box binding protein-1 (XBP-1) is an important regulator of a subset of genes during endoplasmic reticulum (ER) stress. In the current study, we analyzed endogenous XBP-1 expression and localization, with a view to determining the effects of ER stress on the developmental competency of preimplantation embryos in mice. Fluorescence staining revealed that functional XBP-1 is localized on mature ...
متن کاملOxidative stress contributes to autophagy induction in response to endoplasmic reticulum stress in Chlamydomonas reinhardtii.
The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) results in the activation of stress responses, such as the unfolded protein response or the catabolic process of autophagy to ultimately recover cellular homeostasis. ER stress also promotes the production of reactive oxygen species, which play an important role in autophagy regulation. However, it remains unknown...
متن کاملGlutathione Peroxidase-1 Suppresses the Unfolded Protein Response upon Cigarette Smoke Exposure
Oxidative stress provokes endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) in the lungs of chronic obstructive pulmonary (COPD) subjects. The antioxidant, glutathione peroxidase-1 (GPx-1), counters oxidative stress induced by cigarette smoke exposure. Here, we investigate whether GPx-1 expression deters the UPR following exposure to cigarette smoke. Expression of ER str...
متن کاملEndoplasmic reticulum stress induced by tunicamycin increases resistin messenger ribonucleic acid through the pancreatic endoplasmic reticulum eukaryotic initiation factor 2α kinase–activating transcription factor 4–CAAT/enhancer binding protein‐α homologous protein pathway in THP‐1 human monocytes
AIMS/INTRODUCTION Resistin, secreted from adipocytes, causes insulin resistance in mice. In humans, the resistin gene is mainly expressed in monocytes and macrophages. Tunicamycin is known to induce endoplasmic reticulum (ER) stress, and reduce resistin gene expression in 3T3-L1 mouse adipocytes. The aim of the present study was to examine whether ER stress affects resistin gene expression in h...
متن کاملRapamycin ameliorates chitosan nanoparticle-induced developmental defects of preimplantation embryos in mice
Chitosan nanoparticles (CSNPs) are used as drug or gene delivery vehicles. However, a detailed understanding of the effects of CSNPs on embryonic development remains obscure. Here, we show that CSNPs can be internalized into mouse blastocysts, such as the zona pellucida, the perivitelline space, and the cytoplasm. Consequently, CSNPs-induced endoplasmic reticulum (ER) stress increases both of B...
متن کامل